contoh soal fungsi kelas 8 beserta penyelesaiannya
Matematika
aldiansyahbs
Pertanyaan
contoh soal fungsi kelas 8 beserta penyelesaiannya
1 Jawaban
-
1. Jawaban she2409
1. Pada pemetaan bayangan dari 2 adalah …
a. 3 b. 8 c. 9 d. 27
Pembahasan :
f(x) = 4x - 5
f(2) = 4(2) - 5
f(2) = 8 - 5 = 3
2. Pada pemetaan maka h(5) adalah …
a. 33 b. 29 c. 21 d. 17
Pembahasan :
h(x) = x^2 + 4
h(5) = 5^2 + 4
h(5) = 25 + 4 = 29
3. Pada pemetaan f : 5 – x, jika daerah asalnya {-3, -2, -1, 0. 1, 2, 3, 4}, maka daerah hasilnya adalah …
a. {–1, –2, –3, –4, –5, –6, –7, –8} c. {1, 2, 3, 4, 5, 6, 7, 8}
b. {–2, –3, –4, –5, –6, –7, –8, –9} d. {2, 3, 4, 5, 6, 7, 8, 9}
Pembahasan :
f(-3) = 5 - (-3) = 8 f(1) = 5 - 1 = 4
f(-2) = 5 - (-2) = 7 f(2) = 5 - 2 = 3
f(-1) = 5 - (-1) = 6 f(3) = 5 - 3 = 2
f(0) = 5 - 0 = 5 f(4) = 5 - 4 = 1
Daerah Hasilnya = {1, 2, 3, 4, 5, 6, 7, 8}
4. Pada pemetaan jika daerah asalnya {x | x < 5, x Î bilangan asli }, maka daerah hasilnya adalah …
a. {–4, –8, –12, –16, –20} c. {4, 8, 12, 16, 20}
b. {–8, –12, –16, –20, – 22} d. {8, 12, 16, 20, 22}
Pembahasan :
x = {1, 2, 3, 4, 5}
f(1) = 4(1) = 4 f(4) = 4(4) = 16
f(2) = 4(2) = 8 f(5) = 4(5) = 20
f(3) = 4(3) = 12
daerah hasilnya = {4, 8, 12, 16, 20}
5. Pada pemetaan jika daerah asalnya x Î {2, 3, 4, 5 }, rangenya adalah …
a. {4, 11, 14, 15} c. {6, 11, 14, 17}
b. {6, 11, 14, 15} d. {8, 11, 14, 17}
Pembahasan :
f(2) = 3(2) + 2 = 8 f(4) = 3(4) + 2 = 14
f(3) = 3(3) + 2 = 11 f(5) = 3(5) + 2 = 17
Daerah hasilnya = {8, 11, 14, 17}
6. Fungsi f dinyatakan dengan rumus f(x) = px + q, jika f(0) = –2 dan f(2) = 4, maka nilai p dan q berturut-turut adalah …
a. 2 dan –5 b. – 2 dan 5 c. 2 dan –3 d. –2 dan 3
Pembahasan :
f(0) = -2 ® p(0) + q = -2 ® q = -2
f(2) = 4
p(2) + q = 4
2p + (-2) = 4
2p - 2 = 4
2p =4 + 2 p = 6/2 = 3
7. Dari tabel di bawah ini, himpunan pasangan berurutannya adalah ….
a. {(0, -1), (1, 1), (2, 3), (3, 5), (4, 7)}
b. {(0, 1), (1, 1), (2, 3), (3, 5), (4, 7)}
c. {(-1, 1), (1, 1), (3, 2), (5, 3), (7, 4)}
d. {(1, -1), (1, 1), (3, 2), (5, 3), (7, 4)}
Pembahasan :
Himpunan Pasangan berurutannya:
{(0, -1), (1, 1), (2, 3), (3, 5), (4, 7)}
8. Dari tabel fungsi f(x) = 3x – 2, rangenya adalah .....
a. {(2, -8), (-1, -5), (0, -2), (1, 1), (2, 4), (3, 7)}
b. {(2, 8), (-1, 5), (0, -2), (1, 1), (2, 4), (3, 7)}
c. {(-8, -2), (-5, -1), (-2, 0), (1, 1), (4, 2), (7, 3)}
d. {(8, -2), (5, -1), (-2, 0), (1, 1), (4, 2), (7, 3)}
Pembahasan :
Range : {(2, -8), (-1, -5), (0, -2), (1, 1), (2, 4), (3, 7)}
9. Diketahui fungsi f : x ---> ax – 7 dan f(5) = 18, maka nilai a adalah …
a. 5 b. 6 c. 7 d. 8
Pembahasan :
f(5) = 18
5a - 7 = 18
5a = 18 + 7
5a = 25, maka a = 5
10. Diketahui fungsi f : x ---> 3x – 11 dan f(a) = –20, maka nilai a adalah …
a. – 3 b. – 4 c. – 5 d. – 6
Pembahasan :
f(a) = -20
3a - 11 = -20
3a = -20 + 11 ® 3a = -9 ® a = -3
11. Pada pemetaan f : x ---> 3x + 2, jika f :(a )® 38, maka nilai a adalah …
a. 18 b. 16 c. 12 d. 10
Pembahasan :
f(a) = 38
3a + 2 = 38
3a = 38 - 2
3a = 36 ---> a = 12
12. Diketahui fungsi , jika f( a) ---> 4, maka nilai a adalah …
a. 4 b. 5 c. 6 d. 7
Pembahasan :
<---> x + 3 = 2.4
<---> x + 3 = 8
<---> x = 8 - 3 = 5
13. Diketahui fungsi , jika f(a) = 10, maka nilai a adalah …
a. 22 b. 21 c. 20 d. 19
Pembahasan :
<---> 2a - 12 = 3.10
<---> 2a = 30 + 12
<---> 2a = 42 ----> a = 21
14. Diketahui fungsi f(x) = ax – b, sedangkan f(3) = 4 dan f(–5) = –28, maka nilai a dan b berturut-turut adalah …
a. –3 dan 8 b. 3 dan – 8 c. 4 dan 8 d. 4 dan – 8
Pembahasan :
f(3) = 4 f(-5) = -28
3a - b = 4 .....1) -5a - b = -28 .....2)
Eliminasi b dari pers. 1 dan 2
3a - b = 4
5a + b = 28
________________ +
8a = 32
a = 4
Substitusikan a = 4 ke persamaan 1) :
3(4) - b = 4
12 - b = 4
- b = 4 - 12 ---> b = 8
15. Fungsi f dinyatakan dengan rumus f(x) = ax + b, jika f(2) = 13 dan f(5) = 22, maka nilai a dan b berturut-turut adalah …
a. –4 dan 5 b. 4 dan – 5 c. 3 dan 7 d. 3 dan – 7
Pembahasan :
f(2) = 13 f(5) = 22
2a + b = 13 ..... 1) 5a + b = 22 .... 2)
Eliminasi b dari persamaan 1 dan 2
2a + b = 13
-5a - b = -22
_________________ +
-3a = -9
a = 3
Substitusikan a = 3 ke persamaan 1) :
2(3) + b = 13
6 + b = 13 ----> b = 13 - 6 = 7
II.
1.Diketahui A = {1, 2, 3, 4} dan B = {a, b, c, d}
a. Tulislah himpuanan pasangan berurutan yang menunjukkan korespondensi satu-satu dari A ke B !
b. Berapakan banyak koresponden satu-satu dari A ke B ?
Pembahasan :
a. {(1, a), (2, b), (3, c), (4, d)}
b. (1 x 2 x 3 x 4) = 24
2.Fungsi f dinyatakan dengan rumus f(x) = ax + b, jika f(2) = 13 dan f(5) = 22.
Tentukan :
a.Nilai a dan b
b.rumus fungsi f(x)
c.Tentukan nilai f(10)
Pembahasan :
a. f(x) = ax + b, jika f(2) = 13 maka :
f(2) = 2a + b ® 2a + b = 13 … 1)
f(x) = ax + b, jika f(5) = 22 maka :
f(5) = 5a + b ® 5a + b = 22 … 2)
Eliminasi b dari pers. 1) dan 2)
2a + b = 13
5a + b = 22 –
−3a = −9 ®a = 3
Substitusikan a = 3 ke pers. 1)
2a + b = 13 ® 2(3) + b = 13
® 6 + b = 13 ®b = 7
b. Substitusikan a = 3 dan b = 7 ke fungsi f, maka rumus fungsi menjadi : f(x) = 3x + 7
c. f(x) = 3x + 7, jika f(10) maka :
f(10) = 3(10) + 7
= 30 + 7 = 37